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Abstract. A theory is developed to model the excitations in a dimerized, spin-1/2 system with
a magnetically ordered ground state and where the dimer exchange constant is antiferromagnetic.
This method starts by considering the energy levels of a single dimer in the effective, staggered
magnetic field due to the mean-field ordering of the surrounding dimers. Pseudo-boson operators
are introduced which create and annihilate these excitations, and the Hamiltonian of the magnetic
system can be rewritten in terms of these operators and then diagonalized to yield one doubly
degenerate transverse mode and a longitudinal singlet mode for each non-equivalent dimer in
the magnetic unit cell. The dimer theory has been used to model the measured dispersion
relations in the antiferromagnetically ordered phase of the alternating-chain compound CuWO4.
It provides a good fit to the data and is as successful as spin-wave theory in accounting for
the transverse excitations although with different values of the exchange constants. In addition
the transition temperature and the size of the reduced moment atT = 0 K calculated in the
dimer theory are closer to the experimental values of CuWO4 than those calculated by spin-
wave theory. An important difference between these two models lies in their predictions of the
longitudinal excitations: whereas in spin-wave theory these are regarded as two-magnon events
resulting in a continuum of scattering, in the dimer theory one well defined mode is expected.
An experimental measurement of the longitudinal excitations should distinguish between these
models.

1. Introduction

There has been recently much interest in low-dimensional, spin-1/2 antiferromagnets. One
reason for this is that conventional theories of magnetism, for example spin-wave theory and
mean-field theory, are often inadequate in describing the excitations and magnetic features
of these compounds. The susceptibility of these systems displays a broad maximum well
above the transition temperature indicating the existence of short-range order far above the
long-range ordering temperature. The transition temperature itself is often low compared
to the value calculated from mean-field theory and sometimes there is no ordering at all
pointing to the importance of quantum fluctuations. In the antiferromagnetic phase, the
experimentally measured ordered moment in these compounds is usually substantially less
than that expected in the Néel state, suggesting that the true ground state differs significantly
from the Ńeel state. Finally the excitations above and sometimes even below the transition
temperature have frequently been found to form continua spread out in energy. This feature
suggests the existence of strong quantum fluctuations and is in marked contrast to the
predictions of linear spin-wave theory where only well defined excitations are expected.

A typical low-dimensional, spin-1/2 antiferromagnet is the uniform quasi-one-
dimensional Heisenberg system, KCuF3. This compound has a reduced moment in its
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ordered phase that is 54% of the value expected in a fully aligned Néel state [1] and
its magnetic excitations form a two-spinon continuum rather than well defined spin-waves
[2]. Field theory techniques have been used [3], and these account well for the excitation
continuum. Another type of low-dimensional antiferromagnet is a dimerized, spin-1/2
system, such as CuGeO3 in its spin–Peierls phase. In this phase CuGeO3 consists of
weakly coupled, alternating chains. At low temperature it does not order magnetically [4],
but rather has a spin-singlet ground state.

The low-lying magnetic excitations in CuGeO3 form a well defined, triply degenerate
mode which is characterized by an energy gap at the zone-centre [5]. This energy gap exists
only in the spin–Peierls phase and rapidly tends to zero above the transition temperature [6]
implying that it arises as a direct consequence of the dimerization. Recent measurements on
CuGeO3 also show evidence of a continuum [7], which lies above the mode and is separated
from it by another energy gap. This feature has been predicted to exist in the uncoupled,
alternating-chain system [8]. Spin-wave theory can reproduce the well defined excitations in
CuGeO3 but cannot account for the energy gap (without artificially introducing anisotropy),
triplet degeneracy of the mode or the continuum. The inadequacy of spin-wave theory is
exposed by its inability to explain the excitations of an isolated dimer. An isolated dimer
has a spin-singlet ground state and a triplet of excited states separated by an energy gap from
the ground state (table 1). When spin-wave theory is applied to this system it incorrectly
predicts that there are four energy levels all lying at the same energy and that there is no
energy gap.

Table 1. The eigenfunctions and corresponding eigenvalues of an isolated dimer where−J0 is
the dimer exchange constant which is defined as antiferromagnetic. The ground state|G〉 has
energy−3J0/4 and the excited states|0〉, | − 1〉 and | + 1〉 form a triplet at energyJ0/4. In the
notation| ↑↓〉 is the state where the first spin in the dimer points up and the second spin points
down with respect to an arbitraryz axis.

Eigenfunction Eigenvalue Spin State

|G〉 = 1√
2
{| ↑↓〉 − | ↓↑〉} − 3

4J0 ST = 0, Sz = 0 ground state

| − 1〉 = | ↓↓〉 1
4J0 ST = 1, Sz = −1 excited state

| + 1〉 = | ↑↑〉 1
4J0 ST = 1, Sz = +1 excited state

|0〉 = 1√
2
{| ↑↓〉 + | ↓↑〉} 1

4J0 ST = 0, Sz = 0 excited state

To overcome some of the deficiencies of spin-wave theory an alternative formulation
for CuGeO3 was introduced in [9]. Using pseudo-boson operators acting on dimer rather
than spin operators, a Hamiltonian was constructed. Ignoring higher-order terms and
diagonalizing the bilinear terms gave well defined excitations. Although this bilinear theory
could not account for the continuum observed in CuGeO3, it was successful in explaining
the well defined excitations as well as providing a physically appealing picture that captured
some of the essential characteristics of CuGeO3.

Within a bilinear approximation, the pseudo-boson operator (dimer) formulation has
distinct advantages over the spin-wave formulation. Firstly the dimer model is based on a
spin-singlet ground state whereas spin-wave theory is based on the fully aligned Néel state:
as CuGeO3 does not magnetically order [4], dimer theory is based on a more realistic ground
state. Secondly, dimer model excitations form a triply degenerate mode due to rotational
invariance. In spin-wave theory rotational symmetry is artificially broken by specifying an
ordering direction and the excitations are doublets. Measurements of CuGeO3 in a magnetic
field show triply rather than doubly degenerate modes [10]. Thirdly, the dimer model has
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a zone-centre energy gap which is a function of exchange constants alone. However the
excitations in spin-wave theory are gapless in the absence of an artificially introduced
anisotropy. As the energy gap displayed by CuGeO3 in the spin–Peierls phase, where the
chains are alternating, goes to zero above the transition temperature [6] where the chains are
uniform, it is clear that the gap arises from dimerization rather than anisotropy. Fourthly
in the dimer model the fitted intrachain exchange constants for CuGeO3 are approximately√

2 smaller than those in spin-wave theory. It is interesting to compare this factor of
√

2
to the factor ofπ/2 between spin-wave theory and the exact theory of des Cloizeaux and
Pearson for the low-lying excitations of a uniform, spin-1/2, antiferromagnetic chain [11].

In this paper we shall apply the dimer model to CuWO4; this is an antiferromagnetic,
spin-1/2, dimerized compound which, unlike CuGe3, develops long-range antiferromagnetic
order at low temperatures. CuWO4 consists of weakly coupled, alternating,
antiferromagnetic chains running in the [2,−1, 0] direction [12], as illustrated in figure
1. Unlike CuGeO3, dimerization in CuWO4 is a direct consequence of the low crystal
symmetry and of having four magnetic ions in the magnetic unit cell. These features
mean that most exchange interactions when taken on their own couple the Cu ions into
dimers rather than chains or planes and several different interactions are required for one-,
two- or three-dimensional coupling. CuWO4 has a number of features in common with
low-dimensional, spin-1/2 antiferromagnets. Firstly the ordered moment on the Cu ion
was found by neutron diffraction [13] to be 67% of the value expected in the Néel state,
indicating that the true ground state differs significant from the Néel state. Secondly the
susceptibility of CuWO4 displays a broad maximum at 85.5 K far above the transition
temperature of 24.0 K [14], suggesting the existence of short-range order at temperatures
well above the onset of long-range order.

There is no exact theory of the magnetic excitations in a dimerized, antiferromagnetically
ordered, spin-1/2 compound like CuWO4, although spin-wave theory can adequately model
the excitations below the transition temperature [12]. In this paper the dimer theory used in
[9] is extended for the ordered case and applied to CuWO4. A comparison with spin-wave
theory is also made. The dimer theory will be discussed at some length because this is the
first time it has been presented for the case of a compound with an antiferromagnetically
ordered ground state.

This paper is organized as follows: in the next section the dimer theory is outlined
and the features of CuWO4 are described; the dimer theory is then applied to CuWO4

and the details of the calculation are given with the help of two appendices. In the final
section spin-wave theory and the dimer theory are compared as models for CuWO4 and the
reduced moment, value of the transition temperature and longitudinal scattering predicted
by the two models are discussed.

2. Theory

In this section the dimer theory is developed for a dimerized, spin-1/2 compound with
an antiferromagnetically ordered ground state and is used as a model of the excitations in
CuWO4. In part 2.1 the theory is outlined and in part 2.2 the magnetic features of CuWO4

are discussed, and then part 2.3 describes the dimer theory as applied to CuWO4 in detail.

2.1. Dimer theory for an antiferromagnetically ordered compound

We start by considering an isolated dimer in which two spin-1/2 Cu ions are coupled by
an antiferromagnetic exchange−J0. This system has a spin-singlet ground state|g〉 with
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Figure 1. The alternating chains in CuWO4 are illustrated in thea–b plane where the strong
intrachain exchange is represented by the thick black line and the weaker intrachain exchange
is represented by the thin black line. The dimer pairs are circled and the dashed lines indicate
the structural unit-cell boundaries.

an energy−3J0/4 and a triplet of excited states at an energyJ0 above the ground state.
The excited states have total spinS = 1 and wavefunctions| − 1〉, |0〉 and | + 1〉 where
the notation indicates the eigenvalues ofSz in an arbitraryz direction. The eigenstates
and eigenvalues are listed in table 1, and were used as the basis in which to model the
excitations in [9].

In a dimerized, spin-1/2 crystal where the ground state is weakly antiferromagnetically
ordered, each dimer is in the effective magnetic field due to the antiferromagnetic ordering
of the neighbouring dimers. Using mean-field theory, the interaction energy of each dimer
with the surrounding dimers is given by

EI = F(Sz1 − Sz2) (1)

where the ordering parameterF is given by

F = −Jt |〈Sz1〉|. (2)

In these expressionsJt is the sum of the modulus of all the exchange interactions that couple
each Cu ion to the other Cu ions in the crystal excluding the dimer exchange constant and
this quantity is the same for both Cu ions in the dimer.Sz1 andSz2 are the components of
the spin operators of the first and second Cu ions in the dimer in the ordering direction
(assumed to be thez direction). Lastly the quantity|〈Sz1〉| is the modulus of the expectation
value of the ordered spin of the first Cu ion where it has been assumed that this quantity is
the same for the second Cu ion,|〈Sz2〉| = |〈Sz1〉|. From equations (1) and (2), the effective
magnetic field is a staggered field with strength

BI = BzI = F/gsµB. (3)
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The effect of introducing this staggered field is to mix the isolated dimer eigenstates|G〉
and|0〉 resulting in a new ground state|G′〉 and longitudinal excitation|0′〉. The transverse
excitations| − 1〉 and | + 1〉 are the same as in the isolated dimer case. The eigenfunctions
and corresponding eigenvalues are given in table 2. The expectation value of the spin of
the first Cu ion in the dimer is also listed in table 2 for each eigenstate, and this quantity
can be used to calculate the ordering parameterF(T ) (whereT is temperature). In this
paper we shall concentrate on the low-temperature magnetic behaviour where most of the
dimers in the magnetic system are in their spin-singlet ground states and soF(T ) can be
approximated by

F(T = 0) = −Jt |〈Sz1(T = 0)〉| = −Jt |〈G′|Sz1|G′〉| (4)

from table 2

〈G′|Sz1|G′〉| =
1

2
sin(2θ) = 1

2

√
J 2
t − J 2

0

Jt
. (5)

An important deduction from equation (5) is that antiferromagnetic ordering can only occur
in the dimer model ifJt > J0, this is the condition for the square root in the expression to
be positive. A uniform antiferromagnetic chain whereJt = J0 is therefore on the point of
developing long-range order atT = 0 K, a feature suggested by other theories which predict
quasi-long-range order atT = 0 K [15]. In contrast an alternating chain withJt < J0 is
not expected to show antiferromagnetic ordering at any temperature. Another significant
conclusion is that for all dimerized systems where antiferromagnetic ordering does occur
the ordered spin moment is reduced from the value expected in the fully aligned Néel state,

since the quantity
√
J 2
t − J 2

0 /Jt in equation (5) is always less than one.

Table 2. The eigenfunctions and corresponding eigenvalues for a dimer in a staggered magnetic
field of strengthF/gsµB whereF is the ordering parameter. The expectation value of the spin
on the first Cu ion in the dimer has also been given for each eigenstate.

Eigenstate Eigenvalue 〈n|Sz1|n〉 State

|G′〉 = cos(θ)|G〉 + sin(θ)|0〉 − 1
4J0 − 1

2

√
J 2

0 + 4F 2 1
2 sin(2θ) ground state

| − 1〉 1
4J0 − 1

2 transverse excitation

| + 1〉 1
4J0

1
2 transverse excitation

|0′〉 = − sin(θ)|G〉 + cos(θ)|0〉 − 1
4J0 + 1

2

√
J 2

0 + 4F 2 − 1
2 sin(2θ) longitudinal excitation

where tanθ = 1
2F (J0 −

√
J 2

0 + 4F 2)

The dimer eigenfunctions and eigenvalues have been calculated atT = 0 K in terms
of the quantitiesJt and J0 using equations (4) and (5), and are listed in table 3. Note
that the longitudinal excitation has a higher energy than the transverse excitations. These
states form a useful basis in which to model the low-temperature magnetic behaviour of a
dimerized compound with an antiferromagnetically ordered ground state, and pseudo-boson
operators are introduced which act on theT = 0 dimer eigenfunctions.

The dimer theory developed here is analogous to spin-wave theory. When spin-wave
theory is applied to an antiferromagnetic spin-1/2 system, the basis states consist of the
ground state which is the Ńeel state and the excitations which correspond to individual
spins being reversed. Pseudo-boson operators are introduced to create and annihilate these
excitations giving one doubly degenerate transverse mode for each pair of sublattices in the
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Table 3. The eigenfunctions and corresponding eigenvalues for a dimer in a weakly
antiferromagnetically ordered environment atT = 0 K where the effective magnetic field is

−
√
J 2
t − J 2

0 /2gsµB . The quantityJt is the sum of the modulus of all the exchange interactions
that couple each Cu ion in the dimer to other Cu ions in the magnetic system excluding the
dimer exchange constant.

Eigenstate Eigenvalue State

|G′〉 = cos(θ)|G〉 + sin(θ)|0〉 − 1
4(J0 + 2Jt ) ground state

| − 1〉 1
4J0 transverse excitation

| + 1〉 1
4J0 transverse excitation

|0′〉 = − sin(θ)|G〉 + cos(θ)|0〉 − 1
4(J0 − 2Jt ) longitudinal excitation

where cos(2θ) = J0
Jt

and sin(2θ) =
√
J 2
t −J 2

0
Jt

transverse excitations
     +1

      á     â     á      á      á      â      á    â

       +1

            á     â     á      â      á      â     á     á

longitudinal excitations

   ′0

    á     â      á     â     ß       à      á     â

   ′0

    á     â     ß      à     á      â       á     â

transverse excitations

      −1

     â      â      á      â     á      â      á     â

        −1

     á      â      á     â      á      â      â     â

′G  =     á      â   ;  ′0  =   ß       à  ;

+1   =    á      á   ;  −1   =    â     â   ;

Figure 2. A number of different dimer excitations are illustrated on a one-dimensional,
alternating chain. Each dimer is circled and the excitations are labelled as|0′〉, | + 1〉, and
|−1〉. The collective excitations of dimers coupled together in an antiferromagnetically ordered
system can be regarded as the superposition of single dimer excitations like those illustrated
here.

compound. In the same way that a spin-wave excitation is a linear superposition of states
in which a single spin in the crystal is reversed from its ground state position, the dimer
excitations presented here are superpositions of single dimer excitations. Figure 2 shows a
series of single dimer excitations on a one-dimensional alternating chain. The excitations
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Figure 3. The a–b plane of CuWO4 is illustrated: the dashed line shows the structural unit
cell boundaries and the solid box surrounds one magnetic unit cell. The four Cu ions within the
magnetic cell are labelled 1, 2, 3 and 4, and their relative spin ordering directions are indicated
by the arrows. The two Cu ions forming each dimer pair are connected by a solid line and the
dimers are labelled a1 or a2.

Table 4. The possible exchange interactions in CuWO4 are listed in the first column of this table
and the corresponding exchange paths for which they are responsible are given in the second
column. In the third column the interaction is described as ferromagnetic or antiferromagnetic.

Exchange Ions linked Type

Ja[ijk] Cu 1, r→ Cu 1, r + [i, j, k] ferromagnetic
Cu 2, r→ Cu 2, r + [i, j, k]
Cu 3, r→ Cu 3, r + [i, j, k]
Cu 4, r→ Cu 4, r + [i, j, k]

Jb[ijk] Cu 1, r→ Cu 2, r + [i, j, k] ferromagnetic
Cu 3, r→ Cu 4, r + [i, j, k]

Jc[ijk] Cu 1, r→ Cu 3, r + [i, j, k] antiferromagnetic
Cu 2, r→ Cu 4, r + [i, j, k]
Cu 3, r→ Cu 1, r + [2+ i, j, k]
Cu 4, r→ Cu 2, r + [2+ i, j, k]

Jd[ijk] Cu 1, r→ Cu 4, r + [i, j, k] antiferromagnetic
Cu 3, r→ Cu 2, r + [2+ i, j, k]

resulting from the dimer theory are collective excitations of the magnetic system as a whole
and can be regarded as a linear superposition of states like those illustrated.
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(a)

Figure 4. The upper graph shows the spin-wave theory fit to the CuWO4 data for the direction
indicated in the title and the inset plot is a simulation of the intensities of the modes in this
model using the fitted exchange constants. The lower graph shows the dimer theory fit to the
data and the inset plot is a simulation of the dimer model intensities. The longitudinal mode has
been given for an additional reciprocal space direction indicated by the dot–dashed line: this
direction is stated in the legend.

2.2. The magnetic features of CuWO4

CuWO4 has triclinic symmetry with space groupP 1̄ [16] and there are two Cu ions per
structural unit cell which are related to each other by inversion symmetry. Below its
transition temperature of 24.0 K [14] CuWO4 exhibits long-range antiferromagnetic order
with a magnetic propagation vector(0.5, 0, 0) [17, 18]. The two Cu ions within the structural
unit cell align ferromagnetically, and the Cu ions in successive unit cells along thea
direction align antiferromagnetically leading to a magnetic unit cell that is double the size
of the structural unit cell in thea direction. Figure 3 shows thea–b plane of CuWO4 and
the solid box surrounds one magnetic unit cell. The four magnetic ions are labelled 1, 2, 3
and 4 and their relative spin directions in the ordered phase are indicated by the arrows.
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(b)

Figure 4. (Continued)

There are many possible exchange interactions in CuWO4, and the possible interactions
can be divided into four categories according to which sublattices they couple. These
interactions are quoted in the first column of table 4 and the corresponding exchange paths
associated with each interaction are listed in the second column of table 4; the notation
used here is the same as that used in a previous paper [12]. For example the exchange
interactionJd[i,j,k] links the Cu ions on sublattice 1 in each magnetic unit cell (the Cu 1
type ions) to the Cu 4 type ions in the magnetic cell at displacement vector [i, j, k], and is
also responsible for coupling each Cu 3 type ion to the Cu 2 type ion in the magnetic cell
displaced by a vector [2+ i, j, k]. In the third column of table 4 the exchange interaction is
described as ferromagnetic or antiferromagnetic where it has been assumed that interactions
linking Cu ions whose spins are aligned parallel to each other are ferromagnetic, while those
linking Cu ions whose spins are antiparallel are antiferromagnetic.

The magnetic excitations of CuWO4 were measured using neutron scattering [12]. Two
well defined modes were observed in the antiferromagnetic phase as a direct consequence
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(c)

Figure 4. (Continued)

of having four magnetic ions in the magnetic unit cell in the same way that the number of
phonon branches is related to the number of atoms in the structural unit cell. By analogy
with the phonon case the lower mode is called the acoustic mode and the upper mode the
optic mode. The measured dispersion relations were fitted to spin-wave theory to extract
the exchange interactions responsible for these excitations, and two possible models arose
from the fitting both providing an equally good account of the data. In both models there
are weakly coupled alternating chains running in the [2,−1, 0] direction. Some of the
dispersion curves are shown in the upper graphs of figure 4 along with the spin-wave
theory fit; figure 4(a) shows the dispersion along the chain direction where the energies are
large, while perpendicular to this direction the excitations are lower in energy, figure 4(b).
The spin-wave intensities calculated using the fitted exchange constants are plotted on the
inset graphs and explain why the modes were observed at some points in reciprocal space
and not others.

In this paper we shall concentrate on one of the two spin-wave models that explain the
excitations in CuWO4: this corresponds to model 1 in a previous publication [12] and the
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Table 5. The fitted exchange constants from both spin-wave theory and the dimer theory are
listed; the same set of exchange interactions are required by both models to fit the data although
the values of the exchange constants are different in the two models. The calculated ordered
moment and transition temperature obtained from the models have also been tabulated.

Spin-wave theory Dimer theory

Intrachain exchanges (meV)Jd[−2,1,0] 33.6 12.96
Jd[0,0,0] 8.34 12.49

Intrachain exchanges (meV)Jb[0,1,0] −0.52 −0.72
Jb[0,0,−1] −2.96 −4.28

Ordered moment (µB ) 0.550 0.671

Transition temperature (K) 130.7 62.37
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Figure 5. The four Cu ions in therth magnetic cell are shown; each ion forms part of a dimer
and these dimers are also illustrated. The position vectors of the Cu ions of type 1, 2, 3 and
4 ared(1),d(2),d(3) andd(4) respectively and these are marked on the diagram as are the
position vectors of the dimers with which they are associated,δ(1), δ(2), δ(3) andδ(4).

exchange constants for this model are listed in table 5. This model suggests that CuWO4

can be considered as a dimerized crystal with one large exchange interactionJd[−2,1,0] which
couples the Cu ions into antiferromagnetic pairs. This interaction creates two inequivalent
dimers per magnetic unit cell which are labelled a1 and a2 in figure 3. The a1 dimers couple
Cu 3 type ions to Cu 2 type ions and the a2 dimers couple Cu 1 type ions to Cu 4 type
ions; throughout this paper care has been taken to keep the labelling of the ions within the
magnetic unit cell and the notation of the exchange interactions the same as in the previous
publication [12].
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2.3. The dimer theory applied to CuWO4

The dimer theory assumes that CuWO4 is a dimerized compound with a dimer exchange
interactionJd[−2,1,0] while its ground state has long-range, antiferromagnetic order. The
general Hamiltonian with all possible exchange interactions included, and where the dimer
exchange constant is fixed asJd[−2,1,0], is given by

H = H0+H1 (6)

H0 =
∑
r

J0[S1,r+d(1) · S4,r+[−2,1,0]+d(4) + S3,r+d(3) · S2,r+[0,1,0]+d(2)]

−1

2

∑
r

√
J 2
t − J 2

0 [Sz1,r+d(1) + Sz2,r+d(2) − Sz3,r+d(3) − Sz4,r+d(4)] (7)

H1 =
∑
r

∑
i,j,k

[Ha,r[i,j,k] +Hb,r[i,j,k] +Hc,r[i,j,k] +Hd,r[i,j,k] ]

+1

2

∑
r

√
J 2
t − J 2

0 [Sz1,r+d(1) + Sz2,r+d(2) − Sz3,r+d(3) − Sz4,r+d(4)] (8)

where the quantitiesJ0 andJt are

−J0 = Jd[−2,1,0] (9)

Jt =
∑
i,j,k

(2|Ja[i,j,k] | + |Jb[i,j,k] | + 2|Jc[i,j,k] | + |Jd[i,j,k] |)− |J0|. (10)

The termsHa,r[i,j,k], Hb,r[i,j,k], Hc,r[i,j,k] and Hd,r[i,j,k] involve the exchanges categories
Ja[i,j,k] , Jb[i,j,k] , Jc[i,j,k] andJd[i,j,k] respectively and are given by

Ha,r[i,j,k] = −Ja[i,j,k] [S1,r+d(1) · S1,r+[i,j,k]+d(1) + S2,r+d(2) · S2,r+[i,j,k]+d(2)
+S3,r+d(3) · S3,r+[i,j,k]+d(3) + S4,r+d(4) · S4,r+[i,j,k]+d(4)] (11)

Hb,r[i,j,k] = −Jb[i,j,k] [S1,r+d(1) · S2,r+[i,j,k]+d(2) + S3,r+d(3) · S4,r+[i,j,k]+d(4)] (12)

Hc,r[i,j,k] = −Jc[i,j,k] [S1,r+d(1) · S3,r+[i,j,k]+d(3) + S3,r+d(3) · S1,r+[2+i,j,k]+d(1)
+S2,r+d(2) · S4,r+[i,j,k]+d(4) + S4,r+d(4) · S2,r+[2+i,j,k]+d(2)] (13)

Hd,r[i,j,k] = −Jd[i,j,k] [S1,r+d(1) · S4,r+[i,j,k]+d(4) + S3,r+d(3) · S2,r+[2+i,j,k]+d(4)]. (14)

In this Hamiltonian ferromagnetic exchange interactions are defined as positive and
antiferromagnetic exchange interactions as negative. The sum overr is over all the magnetic
unit cells in the crystal andSp,r+d(p) is the spin operator of the Cu p type ion in therth
magnetic unit cell at position vectorr + d(p) (figure 5 and table 6). The Hamiltonian has
been written as the sum of two terms,H0 which involves the dimer exchange interaction, and
H1 which involves all the other interactions in the crystal. For the purposes of this dimer
theory calculation a term giving the interaction energy of each dimer with the effective,
staggered, magnetic field due to the mean-field ordering of the surrounding dimers atT = 0
K has been added toH0 and then subtracted fromH1. This effective field was discussed in

section 2.1 and equations (3), (4) and (5) show that it is of strength−
√
J 2
t − J 2

0 /2gsµB .
One set of pseudo-boson operators is introduced for each dimer in the crystal. Each set

consists of a creation operator and corresponding annihilation operator for the longitudinal
excitation and two creation operators and their corresponding annihilation operators for the
transverse excitations. There are two different categories of operators in CuWO4 because of
the two inequivalent dimers in each magnetic unit cell: thea1 operators create and annihilate
excitations in the dimers consisting of Cu 3 and Cu 2 ions, while thea2 operators create and
annihilate excitations in the dimers consisting of Cu 1 and Cu 4 ions. The corresponding
creation operators are defined by

an+0′,ρ|G′n,ρ〉 = |0′n,ρ〉 an++1′,ρ|G′n,ρ〉 = | + 1n,ρ〉 an+−1′,ρ|G′n,ρ〉 = | − 1n,ρ〉. (15)
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Table 6. The position vectors of the four Cu ions within therth magnetic unit cell
d(1),d(2),d(3) andd(4) are listed along with the types of dimer with which they are associated
and the positions of these dimersδ(1), δ(2), δ(3) andδ(4). The dimer vectorδ is the vector
connecting the two ions that form each dimer.

Spin Position of spin Type of dimer Position of dimer

S1,r r + d(1) a2 r + δ(1) = r + d(1)− δ/2
S2,r r + d(2) a1 r + δ(2) = r + d(2)− δ/2
S3,r r + d(3) = r + d(1)+ [1, 0, 0] a1 r + δ(3) = r + d(1)− δ/2+ [1, 0, 0]
S4,r r + d(4) = r + d(2)+ [1, 0, 0] a2 r + δ(4) = r + d(2)+ δ/2+ [1, 0, 0]

the dimer vector isδ = d(1)− d(2)+ [1,−1, 0]

The indexn indicates the type of dimer being operated on (1 or 2) and the vectorρ gives
the position of this dimer; for examplea1+

0′,ρ excites the a1 type dimer which is at position
vectorρ from the ground state|G′1,ρ〉 to the longitudinal excited state|0′1,ρ〉. The destruction
operators are similarly defined

an−0′,ρ|0′n,ρ〉 = |G′n,ρ〉 an−+1′,ρ| + 1n,ρ〉 = |G′n,ρ〉 an−−1′,ρ| − 1n,ρ〉 = |G′n,ρ〉. (16)

For the purposes of calculation these operators adopt Bose statistics and obey the
commutation relations

[an−k,ρ, a
n′+
k′,ρ′ ] = δρ,ρ′δk,k′δn,n′ [an−k,ρ, a

n′−
k′,ρ′ ] = 0 [an+k,ρ, a

n′+
k′,ρ′ ] = 0 (17)

wheren andk can take the valuesn = 1, 2; k = 0,+1,−1.
Each spin in CuWO4 forms part of a dimer. Figure 5 shows therth magnetic cell

where the position vectors within the cell of the Cu ions of type 1, 2, 3 and 4 are labelled
d(1),d(2),d(3) andd(4) and the corresponding positions of the dimers they are associated
with are labelledδ(1), δ(2), δ(3) andδ(4). The spin positions are listed in table 6 along
with the positions of their corresponding dimers and each dimer is described as type a1 or
a2.

The Hamiltonian of CuWO4 can be transformed from spin operators to dimer operators.
The partH0 which is the sum of the energies of the individual dimers throughout the system
becomes

H0 =
∑
r

(
Jt [a

1+
0′,r+δ(2)a

1−
0′,r+δ(2) + a2+

0′,r+δ(1)a
2−
0′,r+δ(1)] +

(
Jt + J0

2

)
[a1+
+1,r+δ(2)a

1−
+1,r+δ(2)

+a1+
−1,r+δ(2)a

1−
−1,r+δ(2) + a2+

+1,r+δ(1)a
2−
+1,r+δ(1) + a2+

−1,r+δ(1)a
2−
−1,r+δ(1)]

)
. (18)

H1 can also be written in terms of dimer operators by rewriting each spin operator in terms
of the operators of the dimer with which it is associated. For Cu ions on sublatticesp = 1
and 2S+p,r+d(p) is given by

S+p,r+d(p) =
1√
2
(cosθ + sinθ)(an−−1,r+δ(p) + an++1,r+δ(p)a

n−
0′,r+δ(p))

+ 1√
2
(cosθ − sinθ)(an+0′,r+δ(p)a

n−
−1,r+δ(p) − an++1,r+δ(p)) (19)

where the quantityθ is

cos 2θ = J0

Jt
. (20)
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In this equation Cu 1 type ions havep = 1 andn = 2, while Cu 2 type ions havep = 2
andn = 1. For Cu ions on sublattices 3 and 4 the transformation is

S+p,r+d(p) =
1√
2
(cosθ + sinθ)(an++1,r+δ(p) + an+0′,r+δ(p)a

n−
−1,r+δ(p))

+ 1√
2
(cosθ − sinθ)(an++1,r+δ(p)a

n−
0′,r+δ(p) − an−−1,r+δ(p)) (21)

where Cu 3 type ions havep = 3 andn = 1, while Cu 4 type ions havep = 4 andn = 2.
Expressions forS−p,r+d(p) are found by taking the adjoint ofS+p,r+d(p). The transformation
for the Szp,r+d(p) spin operators on all sublattices is

Szp,r+d(p)=± 1
2 cos 2θ(an−0′,r+δ(p)+an+0′,r+δ(p))+ 1

2a
n+
+1,r+δ(p)a

n−
+1,r+δ(p)− 1

2a
n+
−1,r+δ(p)a

n−
−1,r+δ(p)

± 1
2 sin 2θ(1−2an+0′,r+δ(p)a

n−
0′,r+δ(p)−an++1,r+δ(p)a

n−
+1,r+δ(p)a

n+
−1,r+δ(p)a

n−
−1,r+δ(p)).

(22)

The upper sign is taken for Cu 1 and 2 type ions and the lower sign for Cu 3 and 4 type
ions. Again Cu 1 type ions havep = 1, n = 2; Cu 2 type ions havep = 2, n = 2; Cu 3
type ions havep = 3, n = 1 and Cu 4 type ions havep = 4, n = 2.

Once the Hamiltonian has been expressed in terms of dimer operators (keeping terms
of up to order two) it is found to be the sum of two separate Hamiltonians, one depending
on the longitudinal operatorsan±0′,r+δ(p) and the other depending on the transverse operators
an±+1,r+δ(p) andan±−1,r+δ(p).

H = HL(an±0′,r+δ(p)(n = 1, p = 2, 3; n = 2, p = 1, 4))

+HT (an±+1,r+δ(p), a
n±
−1,r+δ(p)(n = 1, p = 2, 3; n = 2, p = 1, 4)). (23)

HL arises from the termsSz andSzSz in the Hamiltonian where all the transverse operators
cancel leaving just longitudinal operators, whileHT arises from the termsSxSx andSySy .
HL is the longitudinal part of the Hamiltonian and gives the energy of the longitudinal
modes, whereasHT is the transverse Hamiltonian which governs the behaviour of the
transverse modes.

2.3.1. The transverse Hamiltonian.In order to solve the transverse Hamiltonian and
obtain the energies of the transverse excitations, the Hamiltonian must undergo two further
transformations. First of all, the dimer operators are converted to their Fourier transforms
which are given by

an±+1,r+δ(p) =
1√
N

∑
Q

e±iQ·(r+δ(p)) an±+1,Q an±−1,r+δ(p) =
1√
N

∑
Q

e∓iQ·(r+δ(p)) an±−1,Q.

(24)

The operatoran±k,Q is the Fourier transform, at wavevectorQ, of the dimer operatoran±k,r+δ(p)
for dimer typen and excitationk; the upper sign is for creation operators and the lower
sign for annihilation operators. Whenn = 1, p can take the values 2 and 3, while for
n = 2, p can take the values 1 and 4. The transverse Hamiltonian is given in terms ofan±k,Q
in appendix A. The Hamiltonian can be diagonalized to yield the excitations by introducing
another transformation which is also described in the appendix. The transverse excitations
are found to consist of two doubly degenerate modes with energiesETQ,1 andETQ,2, given by
equations (A13) and (A14). The existence of two excitation branches is a direct consequence
of having two dimers per magnetic unit cell.

The excitation energies resulting from the dimer theory have been fitted to the
experimentally measured dispersion relations of CuWO4 by varying the values of the
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exchange constants, and are successful in modelling the excitations. The data along with
the best fit are shown for some reciprocal space directions in the lower graphs of figure
4 and the fitted exchange constants are listed in table 5. It is interesting to observe that,
while an energy gap is predicted by the dimer theory to exist in a dimerized compound
with a spin-singlet ground state as a direct consequence of the exchange interactions alone,
no gap is predicted by this theory when the ground state is antiferromagnetically ordered.
CuWO4 does in fact have a small energy gap of 1.4 meV (atT = 13 K) which probably
has its origin in residual unquenched orbital angular momentum. To describe this an extra
anisotropy term has been included in the Hamiltonian.

The intensities of the transverse modes have also been calculated in the dimer theory:
they are given by the neutron scattering cross-section

d2σ

d� dω
∝ (1− Q̂xQ̂x)S

xx(Q, ω)+ (1− Q̂yQ̂y)S
yy(Q, ω) (25)

where Q̂x(Q̂y) is the x(y) component of a unit vector in the direction ofQ. The spin
correlation functionsSxx(Q, ω) andSyy(Q, ω) are obtained in appendix A and are given
by equation (A15), (A16) and (A17). The intensities of the excitations, computed using the
fitted exchange constants for CuWO4, are shown on the inset graphs in figure 4.

2.3.2. The longitudinal Hamiltonian.The longitudinal Hamiltonian is solved for the
longitudinal excitations in a similar way to the transverse Hamiltonian. First of all the
dimer operators are converted to their Fourier transforms.

an±0′,r+δ(p) =
1√
N

∑
Q

e±iQ·(r+δ(p))an±0′,Q (26)

and then the Hamiltonian is diagonalized as described in appendix B. The excitations are
found to consist of two modes with energiesELQ,1 andELQ,2 given by equations (B12) and
(B13).

The intensities of these modes are given by the neutron scattering cross-section

d2σ

d� dω
∝ (1− Q̂zQ̂z)S

zz(Q, ω) (27)

whereQ̂z is thez component of a unit vector in the direction ofQ and the spin correlation
functionSzz(Q, ω) is given by (B15) and (B16). Only one of the two modes has non-zero
intensity at any one point in reciprocal space as discussed in appendix B. One mode is non-
zero in the vicinity of the magnetic peaks with reciprocal lattice vectorsτ = [hτ , kτ , lτ ]
wherehτ is integral, and the other mode is observed around the magnetic peaks where
hτ is half-integral. The resulting single longitudinal mode has a periodicity in reciprocal
space that corresponds to the structural unit cell rather than the magnetic unit cell. The
longitudinal energies have been calculated using the exchange constants obtained by fitting
the transverse modes and are shown in the bottom graphs of figure 4 while the intensity is
displayed on the inset plot. The dotted line shows the mode position for a scan in the vicinity
of hτ = 1.5 while the dot–dashed line shows the corresponding scan aroundhτ = 2.0. For
most wavevectors the longitudinal mode lies above both transverse modes and is generally
of lower intensity.

3. Discussion

The dimer theory is successful in accounting for the transverse excitations of CuWO4. This
can be seen from the lower graphs in figure 4 where the energies are correctly reproduced.
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The intensities also agree with experimental measurements, for example, in figure 4(b) the
lower, transverse acoustic mode was observed fromx = 0 to x = 0.15 where the dimer
theory predicts it is strong, but it was not seen at largerx where it is predicted to be weaker;
similarly the upper, transverse optic mode was only observed in the regionx = 0.12 to
x = 0.25 again in accordance with the intensity simulation. The dimer theory fits can be
compared to the spin-wave theory fits which are shown in the upper graphs of figure 4: as
can be seen there is negligible difference between the two and it is clearly not possible to
distinguish between them from a measurement of the transverse excitations.

The same exchange interactions are required to describe the dispersions of CuWO4 in
the two theories but the values of the constants are different with the intrachain interactions
in the dimer theory being both less dimerized and on average of lower strength than those
of spin-wave theory, table 5. This is similar to the case of the dimerized spin-singlet
system CuGeO3 where the average of the intrachain exchange constants is approximately
a factor of

√
2 smaller in dimer theory than in spin-wave theory, a result that is close

to the renormalization factor ofπ/2, calculated exactly by des Cloiseaux and Pearson,
for the low-lying excitations of a uniform, spin-1/2 chain [11]. The difference in the
degree of dimerization between the two models can in part be explained by the fact that
in the dimer theory the requirement for antiferromagnetic ordering isJt > J0, a condition
that automatically limits the amount of dimerization that can occur in a weakly coupled,
alternating-chain system. In spin-wave theory there is no such constraint and the exchange
constants can take any value.

The dimer theory exchange constants are much closer to the values necessary to fit
the susceptibility data of CuWO4 than those of spin-wave theory. The susceptibility of a
powdered sample was measured by Doumercet al [14] between 4.2 K and 650 K and the
data showed a broad maximum at 85.5 K well above the transition temperature of 24.0 K.
These data were compared to the numerical calculations of Duffy and Barr [19] where the
susceptibility of an infinite, alternating, spin-1/2 chain was obtained by extrapolation from
simulations of finite chains with length of up to ten spins. The fitted exchange constants,
J0 = −11.56 meV andJ1 = −9.246 meV, are similar to those of the dimer model but do
not agree with either the strength or amount of dimerization required by spin-wave theory.

Both the dimer theory and spin-wave theory can be used to determine the transition
temperature of CuWO4 using mean-field theory. The expression forTN given by spin-wave
theory is

TN,SW = 1

4k
(Jt + J0) (28)

where k is the Boltzmann constant. Using the fitted exchange constants (28) gives
TN,SW = 130.67 K.

The transition temperature of CuWO4 has also been calculated from the dimer theory.
Each dimer in the system is considered as being in the effective, staggered, magnetic
field due to the ordering of the surrounding dimers where this ordering is a function of
temperature. This effective field was discussed in section 2.1 for the case ofT = 0 K
where it was given by equations (3), (4) and (5). At a finite temperature the field becomes

BI (T ) = BzI (T ) = F(T )/gsµB (29)

F(T ) = −Jt |〈Sz1(T )〉| (30)

where the ordering parameterF(T ) is now calculated from the modulus of the temperature
dependent expectation value of the ordered spin of the first Cu ion in the dimer given by
the Boltzmann weighting of the expectation value ofSz1 in each of the dimer eigenstates.
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These expectation values are listed in the third column of table 2 and the resulting value of
F(T ) is

F(T ) = −Jt sin(2θ)

2

[eα/2kT − e−α/2kT ]

[eα/2kT + e−α/2kT + 2 e−J0/2kT ]
(31)

where

tanθ = 1

2F
(J0− α) andα =

√
J 2

0 + 4F 2. (32)

Close to the transition temperatureF is small and tanθ ≈ −F(T )/J0, sinθ ≈ −F(T )/J0

and cosθ ≈ 1; using these approximations equation (31) becomes

1= Jt

J0

[1− e−J0/kT ]

[1+ 3 e−J0/kT ]
T → TN,D. (33)

The transition temperature calculated from equation (33), usingJt andJ0 obtained from the
dimer theory fitting (table 5), isTN,D = 62.37 K.

Both the values of the transition temperature calculated in the dimer theory and spin-
wave theory are substantially higher than the experimental transition temperature of 24.0
K [14] as is always the case when mean-field theory is applied to a quasi one-dimensional
system because mean-field theory cannot account for the quantum fluctuations that disrupt
the ordering and lowerTN . Nevertheless it is interesting to note that the transition
temperature obtained from the dimer model is significantly closer to the true value than
that calculated by spin-wave theory.

Another way in which these two theories can be compared is in terms of the ground state
they predict for CuWO4. The ground state of spin-wave theory is initially assumed to be the
Néel state and the excitations are seen as spin-deviations from full spin alignment. When
the Hamiltonian is diagonalized the normal modes or magnons are linear combinations of
these spin-deviations. The expectation value of the ordered moment atT = 0 K can be
calculated in the basis of the magnon states [20] and is reduced from the Néel state value
due to zero-point fluctuations. For CuWO4 µSW = 0.19 µB (i.e. 19% of the Ńeel state
value) which is much lower than the experimental value of 0.67µB [13]. Linear spin-
wave theory overestimates the spin reduction because higher-order terms in the Holstein–
Primakoff transformation which would restrict the spin-deviations to lie between the physical
limits of S and−S have been neglected. When these terms are incorporated within a mean-
field approximation [21] the ordered moment becomes 0.55µB which is much closer to the
experimental value.

Unlike spin-wave theory, a reduction in the spin moment is built into the dimer theory
right from the start and the staggered magnetic field, equation (3), acting on each dimer to
account for the ordering of the surrounding dimers, is proportional to this moment. The
spin moment can be calculated from the dimer eigenstates, table 5, and is given by equation
(5). Since the condition for antiferromagnetic ordering isJt > J0, equation (5) is always
less than 1/2 implying that the spin moment is always reduced from its Néel state value of
1/2. Using the fitted exchange constants for CuWO4, the ordered moment is found to be
µD = 0.671 µB , a value that is remarkably close to the experimental value and which is
significantly better than the spin-wave result.

The most significant difference between the dimer theory and spin-wave theory is
their prediction of longitudinal excitations. The dimer theory predicts one well defined
longitudinal mode in CuWO4 which lies above the transverse modes and has lower intensity
than them figure 4. In contrast no longitudinal excitations are expected in linear spin-wave
theory although longitudinal scattering can occur if higher-order terms are considered. The
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spin correlation functionSzz(Q, ω) then allows two-magnon processes to occur [22] and this
scattering appears as a broad continuum extending above the transverse excitations [23].
The existence of longitudinal modes in dimerized compounds which develop long-range
antiferromagnetic order is interesting because such modes are usually only observed close
to a magnetic phase transition. A longitudinal mode has however recently been predicted
by Schulz in the antiferromagnetic phase of the weakly coupled, spin-1/2, uniform chain
compound KCuF3 [24]. In this calculation the coupling between chains has been treated in
mean-field theory. This mode lies above the transverse mode and has an energy of 10.6
meV at the zone-centre and 54 meV at the zone boundary. The dimer theory can also
be applied to KCuF3, even though this is not a dimerized compound, and it accurately
models the transverse modes and predicts an ordered moment of size 0.43µB which is
reasonably close to the experimental value of 0.54µB . It also predicts a longitudinal mode
similar to that of Schulz with an energy of 16.9 meV at the zone-centre and 55.5 meV at
the zone boundary. The presence of a longitudinal mode in KCuF3 is yet to be confirmed
experimentally. Inelastic neutron scattering measurements show increased intensity at the
zone-centre around 13 meV which could be attributed to this mode although the existing
data has been explained adequately by higher-order spin-wave theory [23].

The longitudinal excitations could also be investigated in CuWO4 in order to find out
whether spin-wave theory or the dimer theory provides the best model of this compound.
Figure 4 shows that the longitudinal mode predicted by the dimer theory is strongest at
the antiferromagnetic zone-centre [1.5, 0, 0] and other regions where it may be observable
are around [2.25,−0.5, 0] and [1.5, 0, 0.5]. Measurements at equivalent wavevectors in
different Brillouin zones could be used to establish whether any observed scattering was
longitudinal in nature. It would also be appropriate to search for the longitudinal mode in a
dimerized compound where there is a large reduction in the ordered spin moment. This is
because the intensity of the scattering increases as the spin reduction increases making the
mode easier to find. A suitable compound would be Zn-doped CuGeO3, small amounts of
Zn reduce the spin–Peierls transition temperature and cause an additional phase transition
to long-range antiferromagnetic order at low temperatures. For example 2.4% Zn-doped
CuGeO3 hasTs−P = 11.6 K and TN = 4.4 K and the ordered moment atT = 0.5 K is
0.24µB [25] a value that is considerably lower than that of either CuWO4 or KCuF3.

Finally the dimer theory can be compared to theories of uncoupled, spin-1/2
antiferromagnetic chains. A characteristic feature of these theories is deconfinement where
a spin-1 magnon type excitation is unstable and disintegrates into two spin-1/2 solitons
which can move apart. Experimentally this is observed as a continuum of scattering. The
top diagrams in figure 6 show a spin-1/2, Ising chain: this has two alternative Néel states
that are degenerate and are labelled|N1〉 and |N2〉 on chains A and B. Excitations are
formed by reversing spins from their Néel state positions. On chain C a single spin has
been flipped over from its position in the|N1〉 Néel state and the resulting excitation has
spin = 1 and energy= J , whereJ is the intrachain exchange constant. A state where
several consecutive spins are reversed can have exactly the same values of spin and energy
as the single-spin-flip state. For example the excitation illustrated on chain D where five
spins (marked in bold) have been flipped over also has an energy of J. An alternative way
of describing these excitations is as two spin-1/2 domain walls enclosing a region with an
alternative Ńeel states. For an Ising chain where there is also a small transverse exchange
the eigenstates are formed from combinations of states like those illustrated and can be
regarded as moving domain walls or solitons [26]. In the spin-1/2 Heisenberg chain there
is a similar deconfinement of spin waves into spin-1/2 solitons called spinons [27]. These
spinons which are analogous to the domain walls in the Ising system are only allowed to
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Ising Chain
Néel States

N1 ,  E=-JN/4   á    â    á    â    á    â    á    â    á    â    A

N2 , E=-JN/4 â    á    â    á    â    á    â    á    â    á    B

Excitations
S=1

∆S= 1,∆E J=  á    â    á    â    á    é    á    â    á    â    C

∆S= 1,∆E J= á    â    á    é    ê    é    ê    é    á    â    D
  S=1/2     S=1/2

Dimer Chain
Singlet States

S1 , E=-3J0N/8  å    ä     å     ä    å    ä     å     ä    å     ä    E

S2 , E=-3J1N/8  ä    å     ä    å     ä    å      ä    å     ä    å    F

Excitations
    S=1

∆S= 1,∆E J= 0   å     ä     å     ä    å   é    é    ä     å     ä    G

∆S= 1, å     ä    å     é    ì   í     ì   í     é     ä   H
∆E = ( / )3J 40      S=1/2          S=1/2
+ − −( ( ) / ) (( ) / )3 4 20 1J J x L a a       L

 G =   ä    å         + =1   á    á

Fi 6

Figure 6. The two degenerate Ńeel states and possible excited states of an Ising chain are
illustrated and the values of spin and energy of the excitations are also given. Similarly the
two alternative singlet states and possible excitations of a dimer chain are shown. The singlet
states have different energies as indicated and the excitation pictured on chain H has an energy
proportional toL, the separation of the free spins.

exist over half the Brillouin zone and are created and destroyed as pairs. Experimentally
they are observed as a continuum of scattering spread out in energy.

In any real, one-dimensional compound there is always interchain coupling which
often results in long-range, three-dimensional, antiferromagnetic order at low temperatures.
Ordering reduces deconfinement because the interaction energy of the reversed spins with
their neighbours on nearby chains must now be considered, and this energy is proportional
to the number of these spins. For example, with interchain coupling, the excitation on
chain D, figure 6, would have a higher energy than that on chain C, because more spins are
reversed against the mean field of the neighbouring chains. The lowest-lying eigenstates
now correspond to superpositions of single-spin-flip states like C, with only a limited mixing
of the higher-order states which lead to deconfinement, like D. The excitations are therefore
often adequately approximated as well defined, spin-1, magnons.

The dimer theory presented in this paper has similarities with the resonating valence
bond concept first developed for insulating antiferromagnets by Anderson [28], which has
been successful in accounting for the ground state energies in a number of magnetic systems.
The idea is that the ground state is a superposition of states where all the spins are paired up
into singlets, different states being characterized by different pairing combinations. In the
dimer theory only one of these states is chosen as the ground state: this is the lowest-lying
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state where the singlets are between spins connected by the dimer exchange interaction as
shown on the alternating chain, diagram E, figure 6; here the energy per spin is−3J0/8. In
the next-lowest-lying state the singlets are between spins coupled by the weaker intrachain
exchange interaction, chain F, figure 6, which has an energy of−3J1/8 per spin. An
excitation can be created by exciting a dimer into one of its excited triplet levels chain G,
and the analogy, for a singlet ground state, of the excitations shown on chain D of the Ising
system is illustrated on chain H where two free spins surround a region of the alternative
singlet ground state (marked in bold). Unlike in the Ising chain, the energy of chain H
increases as the separationL of the two free spins increases because the two ground states
have different energies: this energy is given in figure 6. Large separations are not favoured
energetically and the lowest-lying eigenstates of the dimer chain are dominated by single
dimer excitations like G, with contributions from states like H limited by the degree of
alternation in the exchange interactions along the chain. As a result the deconfinement is
reduced from that of a uniform, spin-1/2 antiferromagnet and the excitations should be less
spread out in energy. For a compound like CuWO4, where there is both alternation along the
chains and long-range antiferromagnetic order, the excitations are well defined as is indeed
observed experimentally [12]. As a consequence, our approximation of working with only
the linear terms in the Hamiltonian which are responsible for these magnon type excitations
is justified and the higher-order terms which would produce a continuum of excitations are
much less important.

Both spin-wave and the dimer theory presented here are mean-field theories which are
best suited to higher-dimensional systems. It would therefore be interesting to consider
the action of the higher-order terms in the spin-Hamiltonian [30] in order to quantify the
validity of the bilinear approximation and further theoretical work on this issue would be
most welcome. The structure of these terms are dependent on the geometry of the spin
system and cancellations of terms may occur as happens for the trilinear terms in a spin-
ladder geometry [31].

4. Summary

A theory has been presented for a dimerized, spin-1/2 magnetic system which has an
antiferromagnetically ordered ground state. The excitations calculated by this method
consist of one doubly degenerate transverse mode and one longitudinal singlet for each
non-equivalent dimer in the magnetic unit cell. This dimer theory has been used to model
the measured dispersion relations in the antiferromagnetic phase of the alternating-chain
compound CuWO4 and provides a good fit to the data. Detailed comparison has been made
between this theory and spin-wave theory and, whereas both are successful in describing
the excitations, the values of the transition temperature and the reduced moment atT = 0 K
calculated in the dimer theory are closer to the experimental values than those calculated in
spin-wave theory. An important difference between the two models lies in their prediction of
longitudinal excitations; in spin-wave theory these are seen as two-magnon events resulting
in a continuum of scattering, while in the dimer theory one well defined mode is predicted.
A measurement of the longitudinal excitations should distinguish between these models.
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Appendix A

In this appendix the transverse Hamiltonian of CuWO4 is diagonalized and the transverse
excitations are derived; the spin correlation functions are also calculated in terms of the
normal mode co-ordinates. The transverse Hamiltonian written in terms of the Fourier
transforms of the dimer operators has the form

HT =
∑
Q

HT
Q . (A1)

If we consider those terms that are quadratic in the operators and ignore higher-order terms
theHT

Q are

HT
Q =

∑
t,t ′

1
2αQ,t,t ′c

+
t,Qc

+
t ′,Q + 1

2α
∗
Q,t,t ′c

−
t,Qc

+
t ′,Q + βQ,t,t ′c+t,Qc−t ′,Q (A2)

where in this notationc±1,Q = a1±
+1,Q, c

±
2,Q = a1±

−1,Q, c
±
3,Q = a2±

+1,Q, and c±4,Q = a2±
−1,Q. For

CuWO4 theαQ,t,t ′ andβQ,t,t ′ are given by

βQ,1,1 = βQ,2,2 = βQ,3,3 = βQ,4,4 =
(
J0+ Jt

2

)
+
∑
i,j,k

(−Ja[i,j,k] cos(Q · da[i,j,k])

+ 1
2Jd[i,j,k] cos(2θ) cos(Q · dd[i,j,k])) (A3)

αQ,1,4 = αQ,4,1 = αQ,2,3 = αQ,3,2 =
∑
i,j,k

(−Jc[i,j,k] cos(Q · dc[i,j,k])

+ 1
2Jb[i,j,k] cos(2θ) cos(Q · db[i,j,k])) (A4)

βQ,1,3 = β∗Q,3,1 = βQ,2,4 = β∗Q,4,2 = +
∑
i,j,k

(− 1
2Jb[i,j,k] [cos(Q · db[i,j,k])

+i sin(2θ) sin(Q · db[i,j,k])] + Jc[i,j,k] cos(2θ) cos(Q · dc[i,j,k])) (A5)

αQ,1,2 = αQ,2,1 = α∗Q,3,4 = α∗Q,4,3 =
∑
i,j,k

(− 1
2Jd[i,j,k] [cos(Q · dd[i,j,k])

−i sin(2θ) sin(Q · dd[i,j,k])] + Ja[i,j,k] cos(2θ) cos(Q · da[i,j,k])) (A6)

where

da[i,j,k] = −[i, j, k]; db[i,j,k] = −[1+ i, j − 1, k];dc[i,j,k] = −[i + i, j, k];
dd[i,j,k] = [2+ i, j − 1, k]. (A7)

This Hamiltonian is solved by introducing a third transformation to diagonalize it [26]

c−t,Q =
∑
s

(ζ−s,Qut,s,Q + ζ+s,Qv∗t,s,Q) c+t,Q =
∑
s

(ζ+s,Qu
∗
t,s,Q + ζ−s,Qvt,s,Q) (A8)

where ζ+s,Q(ζ
−
s,Q) is the creation (annihilation) operator of thesth mode. Theut,s,Q and

vt,s,Q in equation (A8) are related to each other and the energies by the following set of
homogeneous equations:∑

t ′
((βQ,t,t ′ − ETQ,sδt,t ′)ut ′,s,Q + αQ,t,t ′vt ′,s,Q) = 0∑

t ′
((α∗Q,t,t ′ut ′,s,Q + (β∗Q,t,t ′ + ETQ,sδt,t ′)vt ′,s,Q) = 0 (A9)
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whereETQ,s is the energy of thesth transverse mode andut ′,s,Q and vt ′,s,Q are subject to
the following conditions:∑
t

(ut,s,Qu
∗
t,s ′,Q − vt,s,Qv∗t,s ′,Q) = δs,s ′

∑
t

(ut,s,Qvt,s ′,Q − ut,s ′,Qvt,s,Q) = 0 (A10)

The equations (A9) form a matrix equation which can be split into two identical matrix
equations of the form
βQ,1,1 βQ,1,3 αQ,1,2 αQ,1,4
β∗Q,1,3 βQ,1,1 αQ,1,4 α∗Q,1,2
−α∗Q,1,2 −αQ,1,4 −βQ,1,1 −β∗Q,1,3
−αQ,1,4 −αQ,1,2 −βQ,1,3 −βQ,1,1



u1
s,Q

u2
s,Q

v1
s,Q

v2
s,Q

 = ETQ,s

u1
s,Q

u2
s,Q

v1
s,Q

v2
s,Q

 . (A11)

The eigenvectors in these two equations are
u1
s,Q

u2
s,Q

v1
s,Q

v2
s,Q

 =

u1,s,Q

u3,s,Q

v2,s,Q

v4,s,Q

 and


u1
s,Q

u2
s,Q

v1
s,Q

v2
s,Q

 =

u2,s,Q

u4,s,Q

v1,s,Q

v3,s,Q

 . (A12)

Equation (A10) can be solved to obtain the eigenvaluesETQ,s and the eigenvectors
{uns,Q, vns,Q}. For CuWO4 the transverse Hamiltonian yields two doubly degenerate modes
with energies given by

ETQ,1 =
√
(CT1,Q − CT2,Q) ETQ,2 =

√
(CT1,Q + CT2,Q) (A13)

where the quantitiesCT1,Q andCT2,Q are

CT1,Q = β2
Q,1,1− α2

Q,1,4+ βQ,1,3β∗Q,1,3− αQ,1,2α∗Q,1,2
CT2,Q = (4β2

Q,1,1βQ,1,3β
∗
Q,1,3− 2βQ,1,3β

∗
Q,1,3αQ,1,2α

∗
Q,1,2+ 4α2

Q,1,4αQ,1,2α
∗
Q,1,2

+(α∗Q,1,2βQ,1,3)2+ (αQ,1,2β∗Q,1,2)2− 4βQ,1,1α
∗
Q,1,2αQ,1,4βQ,1,3

−4βQ,1,1αQ,1,2αQ,1,4β
∗
Q,1,3)

1/2. (A14)

The spin correlation functions can be calculated for these modes: they are given by

Sxx(Q, ω) =
∑
s

|〈ETQ,s |SxQ|0〉|2δ(h̄ω − ETQ,s)

and Syy(Q, ω) =
∑
s

|〈ETQ,s |SyQ|0〉|2δ(h̄ω − ETQ,s) (A15)

where|ETQ,s〉 is the wavefunction of the state with eigenvalueETQ,s and |0〉 is the ground
state.SxQ,s andSyQ,s are the Fourier transforms of thex andy components of the spin and
are calculated by passing the spin operators through the same transformations that were
used in the energy calculation given by equations (19), (21), (24) and (A8). The quantities
|〈ETQ,s |SxQ|0〉| and |〈ETQ,s |SyQ|0〉| expressed in terms of the eigenvectors{uns,Q, vns,Q} are

|〈ETQ,s |SxQ|0〉|2 = |〈ETQ,s |SyQ|0〉|2 = 33∗ (A16)

where

3 = 1

2
√

2
e−iτ ·d(1) e−iQ′·δ/2[(cosθ + sinθ)[u2

s,Q′ + (−1)2hτ v1
s,Q′ ]

−(cosθ + sinθ)[v2
s,Q′ + (−1)2hτ u1

s,Q′ ]]
1

2
√

2
e−iτ ·d(2)

×e+iQ′·δ/2[(cosθ + sinθ)[u1
s,Q′ + (−1)2hτ v2

s,Q′ ]
−(cosθ + sinθ)[v1

s,Q′ + (−1)2hτ u2
s,Q′ ]] . (A17)
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Q′ andτ are defined byQ = Q′ + τ , whereτ is a reciprocal lattice vector of the magnetic
unit cell such thatQ′ is a vector lying within the first Brillouin zone;τ is given by
τ = [hτ , kτ , lτ ]. δ is the vector connecting the two Cu ions in the dimer and is equal to
δ = d(1)−d(2)+ [1,−1, 0]. The intensities of the transverse modes can be computed from
the neutron scattering cross-section, equation (25), using these spin correlation functions.

Appendix B

In this appendix the longitudinal Hamiltonian of CuWO4 is diagonalized and the longitudinal
excitations are derived; the spin correlation function is also calculated in terms of the normal
mode co-ordinates. The longitudinal Hamiltonian written in terms of the Fourier transforms
of the dimer operators has the form

HL =
∑
Q

HL
Q. (B1)

If we consider only terms that are quadratic in the operators and ignore higher-order terms
theHL

Q are

HL
Q =

∑
t,t ′

1
4αQ,t,t ′ [c

−
t,Qc

−
t ′,−Q + c−t,−Qc−t ′,Q + c+t,Qc+t ′,−Q + c+t,−Qc+t ′,Q]

+ 1
2βQ,t,t ′ [c

+
t,Qc

−
t ′,Q + c+t,−Qc−t ′,−Q] (B2)

where in this notationc±1,Q = a1±
0,Q, c

±
2,Q = a2±

0,Q. For CuWO4 theαQ,t,t ′ andβQ,t,t ′ are given
by

βQ,1,1 = βQ,2,2 = Jt +
∑
i,j,k

1
2 cos2(2θ)[2Ja[i,j,k] cos(Q · da[i,j,k])− Jd[i,j,k] cos(Q · dd[i,j,k])]

(B3)

βQ,1,2 = βQ,2,1 =
∑
i,j,k

1
2 cos2(2θ)[Jb[i,j,k] cos(Q · db[i,j,k])− 2Jc[i,j,k] cos(Q · dc[i,j,k])] (B4)

αQ,1,1 = αQ,2,2 =
∑
i,j,k

1
2 cos2(2θ)[2Ja[i,j,k] cos(Q · da[i,j,k])− Jd[i,j,k] cos(Q · dd[i,j,k])] (B5)

αQ,1,2 = αQ,2,1 =
∑
i,j,k

1
2 cos2(2θ)[Jb[i,j,k] cos(Q · db[i,j,k])− 2Jc[i,j,k] cos(Q · dc[i,j,k])] (B6)

where

da[i,j,k] = −[i, j, k];db[i,j,k] = −[1+ i, j − 1, k];dc[i,j,k] = −[i + i, j, k];
dd[i,j,k] = [2+ i, j − 1, k]. (B7)

This Hamiltonian can be solved by introducing another transformation to diagonalize it
which is

c−t,Q =
∑
s

(ζ−s,Qut,s,Q + ζ+s,−Qv∗t,s,Q) c+t,−Q =
∑
s

(ζ+s,−Qu
∗
t,s,Q + ζ−s,Qvt,s,Q) (B8)

whereζ+s,Q (ζ−s,Q) is the creation (annihilation) operator of thesth mode. Theut,s,Q and
vt,s,Q in equation (B8) are related to each other and the energies by the following set of
homogeneous equations:∑

t ′
((βQ,t,t ′ − ELQ,sδt,t ′)ut ′,s,Q + αQ,t,t ′vt ′,s,Q) = 0∑

t ′
((αQ,t,t ′ut ′,s,Q + (βQ,t,t ′ + ELQ,sδt,t ′)vt ′,s,Q) = 0. (B9)
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The reality of the matrix elementsαQ,t,t ′ and βQ,t,t ′ , and their invariance to the
transformationQ→ −Q has been used in simplifying the expressionsELQ,s is the energy
of the sth longitudinal mode and theut ′,s,Q andvt ′,s,Q are subject to the conditions∑
t

(ut,s,Qu
∗
t,s ′,Q − vt,s,Qv∗t,s ′,Q) = δs,s ′

∑
t

(ut,s,Qvt,s ′,Q − ut,s ′,Qvt,s,Q) = 0. (B10)

The equations (B9) form the matrix equation
β1,1 β1,2 α1,1 α1,2

β1,2 β1,1 α1,2 α1,1

−α1,1 −α1,2 −β1,1 −β1,2

−α1,2 −α1,1 −β1,2 −β1,1



u1,s,Q

u2,s,Q

v1,s,Q

v2,s,Q

 = ELQ,s

u1,s,Q

u2,s,Q

v1,s,Q

v2,s,Q

 . (B11)

This can be solved to obtain the eigenvaluesELQ,s and the eigenvectors{ut,s,Q, vt,s,Q}. For
CuWO4 the longitudinal Hamiltonian yields two modes with energies given by

ELQ,1 =
√
(CL1,Q − CL2,Q) ELQ,2 =

√
(CL1,Q + CL2,Q) (B12)

where the quantitiesCL1,Q andCL2,Q are

CL1,Q = (βQ,1,1)2+ (βQ,1,2)2− (αQ,1,1)2− (αQ,1,2)2
CL2,Q = βQ,1,1βQ,1,2− αQ,1,1αQ,1,2 (B13)

and the eigenvectors take the form
u1,1,Q

u2,1,Q

v1,1,Q

v2,1,Q

 =

u1,Q

u1,Q

v1,Q

v1,Q

 and


u1,2,Q

u2,2,Q

v1,2,Q

v2,2,Q

 =

u2,Q

−u2,Q

v2,Q

−v2,Q

 . (B14)

The spin correlation function can be calculated for these modes: it is given by

Szz(Q, ω) =
∑
s

|〈ELQ,s |SzQ|0〉|2δ(h̄ω − ELQ,s) (B15)

where|ELQ,s〉 is the wavefunction of the state with eigenvalueELQ,s , and |0〉 is the ground
state. SzQ is the Fourier transform of thez component of the spin and is calculated by
passing the spin operators through the same transformations that were used in the energy
calculation, equations (22), (26) and (B8). The quantity〈ELQ,s |SzQ|0〉, expressed in terms
of the eigenvectors{us,Q, vs,Q} is

〈ELQ,s |SzQ|0〉 = 1
2 cos(2θ) e−iτ ·d(1) e−iQ′·δ/2[us,Q′ + vs,Q′ ][1 ± (−1)2hτ ]

+ 1
2 cos(2θ) e−iτ ·d(2) e−iQ′·δ/2[us,Q′ + vs,Q′ ][1 ± (−1)2hτ ]. (B16)

Q′ andτ are defined byQ = Q′ + τ whereτ is a reciprocal lattice vector of the magnetic
unit cell such thatQ′ is a vector lying within the first Brillouin zone;τ is given by
τ = [hτ , kτ , lτ ]. δ is the vector connecting the two Cu ions in the dimer and is equal to
δ = d(1)− d(2)+ [1,−1, 0]. The upper sign in this expression is for the modes = 1 and
the lower sign is fors = 2. The intensities of the longitudinal excitations can be computed
from the neutron scattering cross-section, equation (25), using this spin correlation function.
Because of the term [1± (−1)2hτ ] only one of the longitudinal modes has non-zero intensity
at any one point in reciprocal space: thes = 1 mode is non-zero whenhτ is integral and
the s = 2 mode is non-zero whenHτ is half-integral.
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